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Abstract: We report on the use of line-scan hyperspectral Raman microscopy in combination
with multivariate statistical analyses for identifying and classifying single cells isolated from
clinical samples of human thyroid nodules based on their intrinsic Raman spectral signatures.
A total of 248 hyperspectral Raman images of single cells from benign thyroid (n = 127) and
classic variant of papillary carcinoma (n = 121) nodules were collected. Spectral differences
attributed to phenylalanine, tryptophan, proteins, lipids, and nucleic acids were identified for
benign and papillary carcinoma cells. Using principal component analysis and linear
discriminant analysis, cells were identified with 97% diagnostic accuracy. In addition,
preliminary data of cells from follicular adenoma (n = 20), follicular carcinoma (n = 25), and
follicular variant of papillary carcinoma (n = 18) nodules suggest the feasibility of further
discrimination of subtypes. Our findings indicate that hyperspectral Raman microscopy can
potentially be developed into an objective approach for analyzing single cells from fine
needle aspiration (FNA) biopsies to enable the minimally invasive diagnosis of
“indeterminate” thyroid nodules and other challenging cases.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Thyroid cancer is the most common endocrine malignancy and ninth most common overall
cancer with an estimated 53,990 new cases in the United States in 2018 [1]. It is more
prevalent in females, accounting for more than 75% of the cases. Thyroid cancer can occur in
any age, but it is most common after age 30, with increasing aggressiveness in older patients
[2]. The cornerstone for evaluating most thyroid nodules is a neck ultrasound followed by
fine-needle aspiration (FNA) in sonographically suspicious nodules. Approximately 10-30%
of thyroid nodules have “indeterminate” cytology according to the criteria set forth by the
Bethesda System for Reporting Thyroid Cytopathology [3]. In these cases the cytopathologist
cannot determine if the nodule is benign or malignant and the patient is faced with the
uncertainty of whether the thyroid should be surgically removed. Recently, various genetic
based molecular studies have been developed to aid clinicians in the management of patients
with indeterminate thyroid nodules; but, the positive predictive value has been suboptimal [4].
As such, thyroidectomy remains the treatment of choice, although majority of the excised
nodules are ultimately benign. Hence, a novel approach that can more accurately diagnose
and differentiate thyroid nodules would avoid unnecessary surgeries and have a major impact
in patient care and management.

Raman spectroscopy is a label-free spectroscopic technique based on inelastic scattering
of light by vibrational modes of chemical bonds that allows for the identification of intrinsic
molecules (e.g. protein, lipids, amino acids, nucleic acids) in cells and tissues. Subtle
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differences in chemical composition and structure can lead to changes in peak intensities or
positions in a Raman spectrum. Raman spectroscopy provides several advantages for
cytopathology applications [5,6]. It can provide intrinsic chemical information of the sample
without requiring exogenous labels or stains, has subcellular spatial resolution if implemented
into a confocal microscope, and is nondestructive and noninvasive. Previous studies have
demonstrated the use of Raman spectroscopy to improve the diagnosis of thyroid tissues [7—
11]. Here, we extend this technology for diagnosing human thyroid cancers at the single cell
level, with the goal of developing Raman spectroscopy as an ancillary spectral cytopathology
tool to improve the accuracy of diagnosing thyroid nodules. In this study, we performed line-
scan hyperspectral Raman microscopy on single cells isolated from benign and neoplastic
human thyroid nodules from clinical samples and applied multivariate statistical methods,
principal component analysis (PCA) and linear discriminant analysis (LDA), to analyze the
multidimensional spectral data for the purposes of optimizing group separation and
determining the diagnostic accuracy of the Raman spectral signatures in various thyroid
nodules.

2. Materials and methods
2.1 Sample collection

This study is approved by our Institutional Review Board (UC Davis, Sacramento, CA). All
patients were consented prior to study enrollment. Representative samples of the fresh
nodules were collected for the study. Nodules that had insufficient residual tissue after
diagnostic sampling were excluded from the study. The diagnostic materials were processed
according to routine diagnostic surgical pathology with hematoxylin and eosin (H&E) stain,
and the final diagnosis rendered is confirmed by a second pathologist for the study.

2.2 Sample preparation

Tissue samples were dissociated into single cells using established methods [12]. Briefly, the
samples were incubated at 37°C in a collagenase (Worthington Type 2) solution 300U/ml in
Hank’s balanced salt solution (HBSS) for a few hours to digest the tissue. After digestion,
single cells were isolated from larger pieces of tissue fragments by using a nylon mesh with
70um pore size (Corning cell strainer). The isolated cells were washed a few times by
centrifugation in HBSS, after which the supernatant was discarded and the packed cells
resuspended for a few minutes into a 4% paraformaldehyde in phosphate buffered saline
(PBS) solution for fixation. The fixed cells were then washed by centrifugation and the
supernatant was re-suspended in PBS solution. The cell solution was pipetted onto a #1
thickness quartz coverslip that was mounted in a cell chamber holder (Thermo Fisher
Scientific). Cells remained immersed in PBS solution for the duration of the Raman
spectroscopy measurements.

2.3 Hyperspectral Raman microscopy

Hyperspectral Raman images of individual cells were acquired using a previously published
method [13]. Briefly, a master oscillator power amplifier fiber laser system (Sacher-Laser)
with a wavelength of 785 nm and a maximum power of 2 W is used as the excitation source.
The laser beam passes a narrow 785 nm maxline laser-line clean-up filter (Semrock, LLO1-
785) to ensure monochromatic excitation and an achromatic cylindrical lens (Thorlabs, f =
100 mm) that focuses the Gaussian beam into a line profile. The cylindrical lens sits on a
rotational mount for adjusting the orientation of the line to ensure that it is properly imaged
onto the entrance slit of the spectrometer (PI Acton, SpectraPro SP2300i). After the
cylindrical lens, the line-profile is imaged by an achromatic lens (Thorlabs, f = 500 mm) onto
the back aperture of a 60x, 1.2 N.A. water immersion objective lens (Olympus, UPlanSApo)
and focused into the sample plane. The length of the line at the sample plane is 50 um with a
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diffraction-limited width. The cell sample sits on a motorized flat top translational stage
(ProScan Prior II) of an inverted microscope (Leica, DM IRM), allowing for scan. The
Raman signals generated from the line shaped focal region are collected by the same
objective lens and separated from the excitation source by a 785 nm dichroic long pass filter
(Semrock, LP02-785RU). The Raman signals pass through another razoredge long pass filter
(Semrock, LP02-785RE) and are imaged by an achromatic lens (Thorlabs, f = 125 mm), onto
the entrance-slit of the spectrometer. The slit is adjusted to a width of 20 um. A 600 grooves
per mm grating is used to disperse the Raman signals from the line pattern, which is imaged
onto a back-illuminated deep-depletion CCD detector (PI Acton, Pixis100). The image of the
50 pm long line is projected onto 100 pixels on the CCD chip, resulting in 0.5 um per pixel.
Typical Raman acquisition times per line is 50 seconds leading to a full hyperspectral Raman
image of a single cell within minutes by scanning the cell with 1um step in the direction
perpendicularly to the excitation laser line.

2.4 Data analysis

Background removal was first performed on the Raman spectra using a fully automated
method for subtraction of fluorescence from biological Raman spectra [14]. Raman spectra
were normalized with respect to the area under the curve. Multivariate statistical analysis was
then performed on the multidimensional Raman spectral data for objective identification and
classification of single thyroid cells. PCA is an unsupervised method that is used to identify
the combination of Raman spectral features that maximize the data variance. These features
are captured in a new set of variables called principal components (PCs) in a reduced
dimension. The first few PCs typically account for the majority of the data variance.
However, as an unsupervised method, PCA has no prior knowledge about the groupings of
the spectral data, which means it is not suitable for the purposes of group separation. LDA is
a supervised technique and is useful for discriminating between groups. So, for the purposes
of optimizing group classification, a PCA-LDA model was developed in which PCs were
used as the input variables for LDA. A ‘leave-N-out’ cross-validation technique was used to
test the classification sensitivity and specificity of the PCA-LDA model. This procedure
involves taking all K-N cells as a training set to build the LDA model, which is then used to
classify the N ‘blind’ cells that were left out. This is done repeatedly for every possible group
of N in the set of K cells. The accuracy of a prediction cross validation method of Raman
spectra was presented by using the confusion matrix, where cells were classified as true
negative (TN), false positive (FP), true positive (TP) and false negative (FN). Diagnostic
accuracy, sensitivity and specificity were calculated. All homemade algorithms were written
in Matlab (Mathworks, USA).

3. Results and discussion

Table 1 summarizes the patient sample characteristics used in this study. 228 cells from 10
different thyroid nodules (5 benign, 5 papillary carcinomas) underwent Raman spectroscopic
analysis and hyperspectral Raman images were acquired from each individual cell.
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Table 1. Clinical thyroid tissue samples

Specimen Final Pathologic Diagnosis Ra:l;)lf images
1 Benign nodular hyperplasia 28
2 Benign nodular hyperplasia 36
3 Benign nodular hyperplasia 20
4 Benign nodular hyperplasia 29
5 Benign nodular hyperplasia 14
6 Papillary carcinoma, classic variant 28
7 Papillary carcinoma, classic variant 29
8 Papillary carcinoma, classic variant 17
9 Papillary carcinoma, classic variant 16
10 Papillary carcinoma, classic variant 31

Total:248

Figure 1 shows bright-field images of (a) classic variant of papillary thyroid carcinoma
(CVPTC) and (g) benign single follicular cell. False color Raman images for the CVPTC (b-
f) and benign (h-1) cell are generated using the band area intensities of select Raman peaks
centered at 1003, 1080, 1293, 1430, and 1667 cm™'. The bar scale was kept constant for all
images. The sizes of the Raman images are typically 60x30 pixels. The Raman images in Fig.
1 indicate that there are several potential spectral differences between CVPTC and benign
cells.

Papillary carcinoma

(f) 208m,
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1003 cm! 1080 cm™ 1293 cm! 1430 cm™? 1667 cm™

10pum
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Fig. 1. Brightfield and Raman images of (a-f) papillary thyroid carcinoma cell and (g-1) benign
follicular cell for select Raman bands.

To convert the hyperspectral Raman image of a cell into a single Raman spectrum that
accurately represents the total chemical composition of the cell, we sum up the spectral
signals from all pixels belonging to it in the Raman image. These single cell Raman spectra
are used in all subsequent analysis for discriminating and classifying cell types. Figure 2
shows the average Raman spectra of 127 benign (blue line) and 121 CVPTC (red line) cells.
The light gray shadows represent + 1 standard deviations (SD) over the average values. The
main spectral differences between benign and CVPTC cells, as emphasized in the difference
spectrum in Fig. 2(c), are revealed in the 1003 em™’, 1031 em™, 1080 em™, 1205 cm™, 1260
em™, 1293 em™, 1362 cm™, 1430 cm™, 1667 cm™' Raman band intensities. Table 2 shows
the molecular assignment of these Raman peaks [7,9,11,15].
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Fig. 2. Average Raman spectra of (a) 127 benign (blue line) and (b) 121 PTC classic variant
(red line) cells. The gray shadows represent + 1 standard deviations (SD) over the average
values. (c) The difference spectrum (benign — CVPTC) highlights the peaks that are associated
with benign cells (blue shade) and CVPTC cells (red shade).

Benign cells have higher peak intensities at 1003 cm™, 1031 cm™, 1205 cm™, 1362 cm™
and 1667 cm™ compared to malignant cells, suggesting that benign cells on average contain
more phenylalanine, tryptophan, and protein. CVPTC cells exhibited higher peak intensities
at 1080 cm™', which is assigned to phosphodiester groups in nucleic acids, and 1260 cm™,
1293 em™" and 1430 cm™, which are assigned to lipids. Most of the differences observed in
our study agree with previous literature that also used Raman spectroscopy with 785 nm
excitation to study thyroid tissues [10,11]. Neto et al. [11] have observed decreases in amide I
protein and phenylalanine spectral peaks and increases in lipid peaks for papillary thyroid
carcinoma. Li et al. [10] have observed decreases in phenylalanine peaks and increases in
nucleic acid peaks for thyroid cancer tissues. Previous work [8,9], also using Raman
spectroscopy to study thyroid tissues, reported differences in the carotenoid Raman bands for
carcinoma and healthy thyroid tissues. These bands were observed mostly due to the
resonance Raman effect by using a 532 nm excitation laser. However, these contributions
were not observed in our Raman spectra because, with our 785 nm excitation source, we did
not explore resonance effects in our study.

Additionally, Gniadecka et al. observed a reduction in amide I protein and phenylalanine
peaks in Raman spectra for melanoma skin cancer [16]. Miyagi et al. have shown, through
plasma free amino acid (PFAA) profiling, decreases in phenylalanine levels in patients with
gastric cancer [17]. Previous works have also shown that tryptophan levels were reduced in
esophageal cancer [18,19]. Jordan O’Malley et. al. [20] for example, by using Raman
microspectroscopy, suggest lipids as a potential biomarker in prostate cancer due to lipids
work as one of the major drivers for growth and membrane synthesis in malignant cells.
Bergholt et al. [21], by using in vivo Raman endoscopy to study esophageal cancer, have
found significant increases in nucleic acids for patients with cancer and suggest that may be a
suitable biomarker to discriminate normal and cancer tissues.
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Table 2. Raman band positions and assignments [7,9,11,15]. (Note: v: stretching
vibration; vs: symmetrical stretching vibration; 6: bending vibration).

Band position (rel cm™)

Raman band Assignments

1003
1031
1080
1205

1260
1293
1362
1430
1667

Phenylalanine vs(C-C); protein

Phenylalanine (8 (C-H) and C-H in-plane bending);protein (C-N
stretching); carbohydrate residues of collagen

Phosphodiester groups in nucleic acids; v(C-C); vs(PO*)
Phenylalanine; tryptophan; adenine and tyrosine(ring breathing); amide
HI, V(C'CéHS)

Lipids

Cytosine; lipid and collagen

Tryptophan

Lipid (CHj, scissoring and 8(CHj3));

Amide I (proteins); protein band carbonyl v(C = O); lipids v(C = O)

Figure 3(a) shows a 3D PCA scatter plot of the single cell Raman spectra based on the
first three principal components (PCs), which account for 60% of the total variance in the
Raman spectral data. Figure 3(b) shows the first three component coefficients, which
highlight the combination of the Raman spectral features that contribute the most to
maximizing the data variance. PC1, which captures the most variance, is similar to the
difference spectrum in Fig. 2(c). The scatter plot shows that the first 3 PCs can separate the
benign and CVPTC cells into distinct groups.
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Fig. 3. (a) 3D PCA score plot of all individual Raman spectra for benign (blue circles) and
CVPTC (red diamonds) cells. (b) Offset plot of the first three PCs coefficients.

PCA-LDA analysis was performed by using the first three PCs as the input variables for
LDA. Figure 4 shows 2D (4a) and 3D (4b) PCA-LDA plots, with 95% interval confidence,
covariance error ellipses and ellipsoids.
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Fig. 4. (a) 2D and (b) 3D PCA-LDA score plots of benign (blue) and papillary carcinoma (red)
cells with 95% interval confidence covariance error ellipses/ellipsoids.

Leave-N-out cross-validation was performed for classifying all 248 (K) cell spectra. A
training set of 238 (K-N) cell spectra was used to classify the 10 (N) cell spectra that were left
out of the training set by associating the N unknown spectra with the closest cluster in the
training set. This process was repeated for all possible groups of N spectra in the set. The
accuracy of the prediction method was quantified in the confusion matrix shown in Table 3.
The cell misclassification may be due to cell-to-cell biological variability and/or PCA
capturing only 60% of the data variance with the first 3 PCs.

Table 3. Confusion matrix of all representative Raman spectra for 127 benign and 121
papillary carcinoma cells.

Confusion Matrix
Benign 123 (TN) 4 (FP)
CVPTC 2(FN) 119 (TP)

Diagnostic accuracy (DA) is a global measure used for general estimation of
discriminative power, and is expressed as a proportion of correctly classified subjects (TP +
TN) among all subjects. Sensitivity and specificity are also expressed as a percentage and
defined by TP/(TP + FN) and TN/(TN + FP), respectively. In this analysis, the two groups
(CVPTC vs. benign) of cells tested were correctly classified with 97% diagnostic accuracy,
98% sensitivity and 97% specificity.
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In addition to showing the ability to accurately discriminate benign follicular cells from
CVPTC, we present preliminary results suggesting that other cell subtypes can be
discriminated from each other as well. The same methods presented in Section 2 were used.
Figure 5 shows the average Raman spectra of 20 follicular thyroid adenoma (FTA), 25
follicular thyroid carcinoma (FTC) and 18 follicular variant of papillary thyroid carcinoma
(FVPTC) cells. The light gray shadows represent + 1 standard deviations (SD) over the
average values.
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Fig. 5. Average Raman spectra of (a) 20 FTA (green line), (b) 20 FTC (magenta line) and (c)
18 FVPTC (dark gray line) cells. The light gray shadows represent = 1 standard deviations
(SD) over the average values.

Figure 6 shows 2-D and 3-D PCA-LDA plots comparing FTA (n = 20) with FTC (n = 25),
and FVPTC (n = 18) with CVPTC (n = 121). The results of the leave-N-out validation
approach, shown in the confusion matrices in Fig. 6, show 100% diagnostic accuracy,
sensitivity, and specificity when comparing FTA and FTC, and 98%, 94%, and 98%,
respectively, when comparing CVPTC and FVPTC. These results have potential clinical
significance, because current FNA analysis, which is the cornerstone, minimally invasive
method to exclude malignant thyroid nodules, cannot distinguish follicular adenoma from
follicular carcinoma. As such, this leads to management conundrums for clinicians and,
ultimately, a thyroidectomy is performed for a definitive diagnosis.
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(magenta plot), 18 FVPTC (dark gray plot) and 121 CVPTC (red plot) cells.(e)-(f) Confusion

matrices.

Table 4 summarizes the diagnostic accuracy, sensitivity, and specificity values for

different pairings of cell type.

Table 4. Performance of the statistical (PCA-LDA with leave-N-out cross validation)
analysis in discriminating thyroid cells.

Comparison Sensitivity (%) Specificity (%) (%I;A
Benign vs. CVPTC 98 97 97
Benign vs. FTA 90 97 96
Benign vs. FTC 100 99 99
Benign vs. FVPTC 89 83 83
FTA vs. CVPTC 94 85 93
FTA vs. FTC 100 100 100
FTA vs. FVPTC 94 95 95
FTC vs. CVPTC 84 92 86
FTC vs. FVPTC 94 100 98
CVPTC vs. FVPTC 94 98 98

4. Conclusion

This study shows that line scan hyperspectral Raman microscopy, in combination with PCA-
LDA analysis and classification is able to accurately differentiate cells from different types of
thyroid nodules with high sensitivity and specificity. While other groups have used micro-
Raman spectroscopy for the discrimination of thyroid commercial cell lines [15,22], our work
to our knowledge is the first single cell Raman spectroscopy study on clinical patient
specimens. Furthermore, our methodology of converting a hyperspectral image into a single
cell Raman spectrum more accurately captures the chemical composition of the entire cell
compared to other studies that acquire a Raman spectrum of a cell by sampling only an
arbitrary fraction of the cell volume [23]. The high reproducibility and diagnostic accuracy of
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our data may be attributed to our method’s ability to adequately sample the entire cell. Our
preliminary results even show excellent discrimination of cells that cannot be distinguished
by current cytopathologic FNA analysis. Future studies will focus on FNA biopsy samples
and will analyze other “indeterminate” thyroid nodules. We believe this novel approach can
be developed into an objective and accurate ancillary tool for analyzing FNA samples to
improve diagnostic cytopathology and avoid unwarranted surgeries.
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